The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level.

Gut. 2018;67(4):625-633

Plain language summary

The human gut microbiome is known to actively influence metabolism, immunity and development. It has been shown that increased physical activity and healthy diet is associated with positive changes in faecal microbial diversity and composition compared with sedentary individuals. The aim of this study was to assess the metabolic activity of the microbiota between extremely active and sedentary individuals. Metabolic and genetic factors of the gut microbiome were analysed in 40 professional rugby players and 46 sedentary controls. This study found significant differences in faecal microbiota between athletes and sedentary controls at the functional metabolic level, providing deeper insight into the link between sustained physical activity and metabolic health. Based on these results, the authors conclude exercise may be an effective way to manipulate the gut microbiome and suggest further controlled trials be done to better understand the relationship between diet, exercise and the gut microbiome.

Abstract

OBJECTIVE It is evident that the gut microbiota and factors that influence its composition and activity effect human metabolic, immunological and developmental processes. We previously reported that extreme physical activity with associated dietary adaptations, such as that pursued by professional athletes, is associated with changes in faecal microbial diversity and composition relative to that of individuals with a more sedentary lifestyle. Here we address the impact of these factors on the functionality/metabolic activity of the microbiota which reveals even greater separation between exercise and a more sedentary state. DESIGN Metabolic phenotyping and functional metagenomic analysis of the gut microbiome of professional international rugby union players (n=40) and controls (n=46) was carried out and results were correlated with lifestyle parameters and clinical measurements (eg, dietary habit and serum creatine kinase, respectively). RESULTS Athletes had relative increases in pathways (eg, amino acid and antibiotic biosynthesis and carbohydrate metabolism) and faecal metabolites (eg, microbial produced short-chain fatty acids (SCFAs) acetate, propionate and butyrate) associated with enhanced muscle turnover (fitness) and overall health when compared with control groups. CONCLUSIONS Differences in faecal microbiota between athletes and sedentary controls show even greater separation at the metagenomic and metabolomic than at compositional levels and provide added insight into the diet-exercise-gut microbiota paradigm.

Lifestyle medicine

Patient Centred Factors : Mediators/Exercise
Environmental Inputs : Diet ; Nutrients ; Microorganisms
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Blood ; Stool ; Urine
Bioactive Substances : Short-chain fatty acids ; SCFAs ; Bacteria

Methodological quality

Allocation concealment : Not applicable

Metadata