The microbiome: A key regulator of stress and neuroinflammation.

Neurobiology of stress. 2016;4:23-33
Full text from:

Plain language summary

This study discusses the concept of intestinal microbiota as the key regulator involved in energy regulation, gut barrier function, protection from pathogens, and immune system function amongst others. The gut microbiota is the complex community of microorganisms that lives in the digestive tracts of humans. The main aim of this study is to summarise the role of gastrointestinal microbiota in fundamental physiological and pathophysiological processes and thereafter to understand and treat a range of stress and immune-related disorders. This review outlines the numerous complex relationships between gastrointestinal microbiota, stress and immune responses at the three critical stages of life The authors concluded that the evidence from this study suggests that resilience to stress and immune-related disorders and dysfunction of stress and immune systems may be dependent on the diversity and complexity of gastrointestinal microbiota. However, gut microbiota mediated relationship to stress and neuro-inflammation is still unconfirmed as previous studies mostly, have largely been, preclinical and further studies are warranted.

Abstract

There is a growing emphasis on the relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health/disease, including brain health and disorders of the central nervous system. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the brain, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis. Changes in this environment can lead to a broad spectrum of physiological and behavioural effects including hypothalamic-pituitary-adrenal (HPA) axis activation, and altered activity of neurotransmitter systems and immune function. While an appropriate, co-ordinated physiological response, such as an immune or stress response are necessary for survival, a dysfunctional response can be detrimental to the host contributing to the development of a number of CNS disorders. In this review, the involvement of the gastrointestinal microbiota in stress-mediated and immune-mediated modulation of neuroendocrine, immune and neurotransmitter systems and the consequential behaviour is considered. We also focus on the mechanisms by which commensal gut microbiota can regulate neuroinflammation and further aim to exploit our understanding of their role in stress-related disorders as a consequence of neuroinflammatory processes.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Immune and inflammation
Patient Centred Factors : Triggers/Gut microbiota
Environmental Inputs : Nutrients ; Microorganisms
Personal Lifestyle Factors : Nutrition ; Sleep and relaxation ; Environment
Functional Laboratory Testing : Blood

Methodological quality

Allocation concealment : Not applicable
Publication Type : Review ; Journal Article

Metadata