Plain language summary

Congenital sucrase-isomaltase deficiency (CSID) is a genetic disorder which results in a lower ability to digest certain sugars, resulting in diarrhoea, abdominal pain and bloating, which are also common symptoms of Irritable Bowel Syndrome (IBS). The objective of this study was to test sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. The researchers looked at genetics in several populations with and without IBS. The researchers found that genetic mutations are associated with a 35% reduction in the activity of the SI enzymes. CSID mutations were almost twice as common in IBS patients than healthy controls. The genetic variant 15Phe was associated with diarrhoea, stool frequency and changes in the gut bacteria. The authors concluded that people with SI gene variants associated with reduced enzyme activity are more at risk of IBS. Genetic screening could help to identify individuals at increased risk of IBS, and may lead to more targeted treatment for some people with IBS.

Abstract

OBJECTIVE IBS is a common gut disorder of uncertain pathogenesis. Among other factors, genetics and certain foods are proposed to contribute. Congenital sucrase-isomaltase deficiency (CSID) is a rare genetic form of disaccharide malabsorption characterised by diarrhoea, abdominal pain and bloating, which are features common to IBS. We tested sucrase-isomaltase (SI) gene variants for their potential relevance in IBS. DESIGN We sequenced SI exons in seven familial cases, and screened four CSID mutations (p.Val557Gly, p.Gly1073Asp, p.Arg1124Ter and p.Phe1745Cys) and a common SI coding polymorphism (p.Val15Phe) in a multicentre cohort of 1887 cases and controls. We studied the effect of the 15Val to 15Phe substitution on SI function in vitro. We analysed p.Val15Phe genotype in relation to IBS status, stool frequency and faecal microbiota composition in 250 individuals from the general population. RESULTS CSID mutations were more common in patients than asymptomatic controls (p=0.074; OR=1.84) and Exome Aggregation Consortium reference sequenced individuals (p=0.020; OR=1.57). 15Phe was detected in 6/7 sequenced familial cases, and increased IBS risk in case-control and population-based cohorts, with best evidence for diarrhoea phenotypes (combined p=0.00012; OR=1.36). In the population-based sample, 15Phe allele dosage correlated with stool frequency (p=0.026) and Parabacteroides faecal microbiota abundance (p=0.0024). The SI protein with 15Phe exhibited 35% reduced enzymatic activity in vitro compared with 15Val (p<0.05). CONCLUSIONS SI gene variants coding for disaccharidases with defective or reduced enzymatic activity predispose to IBS. This may help the identification of individuals at risk, and contribute to personalising treatment options in a subset of patients.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Antecedents/Genetics
Environmental Inputs : Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool ; Tissue biopsy
Bioactive Substances : Sucrase ; Isomaltase

Methodological quality

Allocation concealment : Not applicable

Metadata